Genetic and functional analysis of HIV-1 Rev Responsive Element (RRE) sequences from North-India

Author:

Sharma Yogeshwar,Neogi Ujjwal,Sood Vikas,Banerjee Snigdha,Samrat Subodh,Wanchu Ajay,Singh Surjit,Banerjea Akhil C

Abstract

Abstract HIV-1 Rev protein regulates the expression of HIV-1 transcripts by binding to a highly structured stem loop structure called the Rev Responsive Element (RRE) present in the genomic and partially spliced RNAs. Genetic variation in this structure is likely to affect binding of Rev protein and ultimately overall gene expression and replication. We characterized RRE sequences from 13 HIV-1 infected individuals from North India which also included two mother-child pairs following vertical transmission. We observed high degree of conservation of sequences, including the 9-nt (CACUAUGGG) long sequence in stem-loop B, required for efficient binding of Rev protein. All of our 13 RRE sequences possessed G to A (position 66) mutation located in the critical branched-stem-loop B which is not present in consensus C or B sequence. We derived a consensus RRE structure which showed interesting changes in the stem-loop structures including the stem-loop B. Mother-Child RRE sequences showed conservation of unique polymorphisms as well as some new mutations in child RRE sequences. Despite these changes, the ability to form multiple essential stem-loop structures required for Rev binding was conserved. RRE RNA derived from one of the samples, VT5, retained the ability to bind Rev protein under in vitro conditions although it showed alternate secondary structure. This is the first study from India describing the structural and possible functional implications due to very unique RRE sequence heterogeneity and its possible role in vertical transmission and gene expression.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Virology,Molecular Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3