Individual patient data meta-analysis of survival data using Poisson regression models

Author:

Crowther Michael J,Riley Richard D,Staessen Jan A,Wang Jiguang,Gueyffier Francois,Lambert Paul C

Abstract

Abstract Background An Individual Patient Data (IPD) meta-analysis is often considered the gold-standard for synthesising survival data from clinical trials. An IPD meta-analysis can be achieved by either a two-stage or a one-stage approach, depending on whether the trials are analysed separately or simultaneously. A range of one-stage hierarchical Cox models have been previously proposed, but these are known to be computationally intensive and are not currently available in all standard statistical software. We describe an alternative approach using Poisson based Generalised Linear Models (GLMs). Methods We illustrate, through application and simulation, the Poisson approach both classically and in a Bayesian framework, in two-stage and one-stage approaches. We outline the benefits of our one-stage approach through extension to modelling treatment-covariate interactions and non-proportional hazards. Ten trials of hypertension treatment, with all-cause death the outcome of interest, are used to apply and assess the approach. Results We show that the Poisson approach obtains almost identical estimates to the Cox model, is additionally computationally efficient and directly estimates the baseline hazard. Some downward bias is observed in classical estimates of the heterogeneity in the treatment effect, with improved performance from the Bayesian approach. Conclusion Our approach provides a highly flexible and computationally efficient framework, available in all standard statistical software, to the investigation of not only heterogeneity, but the presence of non-proportional hazards and treatment effect modifiers.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3