Abstract
AbstractMicrofluidic organ-on-a-chip technologies have enabled construction of biomimetic physiologically and pathologically relevant models. This paper describes an injection molded microfluidic platform that utilizes a novel sequential edge-guided patterning method based on spontaneous capillary flow to realize three-dimensional co-culture models and form an array of micro-vascularized tissues (28 per 1 × 2-inch slide format). The MicroVascular Injection-Molded Plastic Array 3D Culture (MV-IMPACT) platform is fabricated by injection molding, resulting in devices that are reliable and easy to use. By patterning hydrogels containing human umbilical endothelial cells and fibroblasts in close proximity and allowing them to form vasculogenic networks, an array of perfusable vascularized micro-tissues can be formed in a highly efficient manner. The high-throughput generation of angiogenic sprouts was quantified and their uniformity was characterized. Due to its compact design (half the size of a 96-well microtiter plate), it requires small amount of reagents and cells per device. In addition, the device design is compatible with a high content imaging machine such as Yokogawa CQ-1. Furthermore, we demonstrated the potential of our platform for high-throughput phenotypic screening by testing the effect of DAPT, a chemical known to affect angiogenesis. The MV-IMPACT represent a significant improvement over our previous PDMS-based devices in terms of molding 3D co-culture conditions at much higher throughput with added reliability and robustness in obtaining vascular micro-tissues and will provide a platform for developing applications in drug screening and development.
Funder
National Research Foundation of Korea
Ministry of Health and Welfare
Foundation for the National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
General Engineering,General Materials Science
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献