Mimicking biological synapses with a-HfSiOx-based memristor: implications for artificial intelligence and memory applications

Author:

Ismail MuhammadORCID,Rasheed Maria,Mahata Chandreswar,Kang Myounggon,Kim Sungjun

Abstract

AbstractMemristors, owing to their uncomplicated structure and resemblance to biological synapses, are predicted to see increased usage in the domain of artificial intelligence. Additionally, to augment the capacity for multilayer data storage in high-density memory applications, meticulous regulation of quantized conduction with an extremely low transition energy is required. In this work, an a-HfSiOx-based memristor was grown through atomic layer deposition (ALD) and investigated for its electrical and biological properties for use in multilevel switching memory and neuromorphic computing systems. The crystal structure and chemical distribution of the HfSiOx/TaN layers were analyzed using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The Pt/a-HfSiOx/TaN memristor was confirmed by transmission electron microscopy (TEM) and showed analog bipolar switching behavior with high endurance stability (1000 cycles), long data retention performance (104 s), and uniform voltage distribution. Its multilevel capability was demonstrated by restricting current compliance (CC) and stopping the reset voltage. The memristor exhibited synaptic properties, such as short-term plasticity, excitatory postsynaptic current (EPSC), spiking-rate-dependent plasticity (SRDP), post-tetanic potentiation (PTP), and paired-pulse facilitation (PPF). Furthermore, it demonstrated 94.6% pattern accuracy in neural network simulations. Thus, a-HfSiOx-based memristors have great potential for use in multilevel memory and neuromorphic computing systems. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3