Optimization of the selection of suitable harvesting periods for medicinal plants: taking Dendrobium officinale as an example

Author:

Li Peiyuan,shen Tao,Li Li,Wang Yuanzhong

Abstract

Abstract Background Dendrobium officinale is a medicinal plant with high commercial value. The Dendrobium officinale market in Yunnan is affected by the standardization of medicinal material quality control and the increase in market demand, mainly due to the inappropriate harvest time, which puts it under increasing resource pressure. In this study, considering the high polysaccharide content of Dendrobium leaves and its contribution to today’s medical industry, (Fourier Transform Infrared Spectrometer) FTIR combined with chemometrics was used to combine the yields of both stem and leaf parts of Dendrobium officinale to identify the different harvesting periods and to predict the dry matter content for the selection of the optimal harvesting period. Results The Three-dimensional correlation spectroscopy (3DCOS) images of Dendrobium stems to build a (Split-Attention Networks) ResNet model can identify different harvesting periods 100%, which is 90% faster than (Support Vector Machine) SVM, and provides a scientific basis for modeling a large number of samples. The (Partial Least Squares Regression) PLSR model based on MSC preprocessing can predict the dry matter content of Dendrobium stems with Factor = 7, RMSE = 0.47, R2 = 0.99, RPD = 8.79; the PLSR model based on SG preprocessing can predict the dry matter content of Dendrobium leaves with Factor = 9, RMSE = 0.2, R2 = 0.99, RPD = 9.55. Conclusions These results show that the ResNet model possesses a fast and accurate recognition ability, and at the same time can provide a scientific basis for the processing of a large number of sample data; the PLSR model with MSC and SG preprocessing can predict the dry matter content of Dendrobium stems and leaves, respectively; The suitable harvesting period for D. officinale is from November to April of the following year, with the best harvesting period being December. During this period, it is necessary to ensure sufficient water supply between 7:00 and 10:00 every day and to provide a certain degree of light blocking between 14:00 and 17:00.

Funder

Major Science and Technology Projects in Yunnan Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3