Automating high-throughput screening for anthracnose resistance in common bean using allele specific PCR

Author:

Zaleski-Cox Marysia,Miklas Phillip N.,Soler-Garzón Alvaro,Hoyos-Villegas Valerio

Abstract

Abstract Background Common beans (Phaseolus vulgaris L.) provide important protein and calories globally. Anthracnose (Colletotrichum lindemuthianum (Sacc. & Magnus) Briosi & Cavara, 1889) is a major disease in common bean and causes significant yield losses in bean production areas. Screening for markers linked to known disease resistance genes provides useful information for plant breeders to develop improved common bean varieties. The Kompetitive Allele Specific PCR (KASP) assay is an affordable genetic screening technique that can be used to accelerate breeding programs, but manual DNA extraction and KASP assay preparation are time-consuming. Several KASP markers have been developed for genes involved in resistance to bean anthracnose, which can reduce yield by up to 100%, but their usefulness is hindered by the labor required to screen a significant number of bean lines. Our research objective was to develop publicly available protocols for DNA extraction and KASP assaying using a liquid handling robot (LHR) which would facilitate high-throughput genetic screening with less active human time required. Anthracnose resistance markers were used to compare manual and automated results. Results The 12 bean anthracnose differential cultivars were screened for four anthracnose KASP markers linked to the resistance genes Co-1, Co-3 and Co-42 both by hand and with the use of an LHR. A protocol was written for DNA extraction and KASP assay thermocycling to implement the LHR. The LHR protocol reduced the active human screening time of 24 samples from 3h44 to 1h23. KASP calls were consistent across replicates but not always accurate for their known linked resistance genes, suggesting more specific markers still need to be developed. Using an LHR, information from KASP assays can be accumulated with little active human time. Conclusion Results suggest that LHRs can be used to expedite time-consuming and tedious lab work such as DNA extraction or PCR plate filling. Notably, LHRs can be used to prepare KASP assays for large sample sizes, facilitating higher throughput use of genetic marker screening tools.

Funder

Fonds de recherche du Québec – Nature et technologies

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3