Attention-optimized DeepLab V3 + for automatic estimation of cucumber disease severity

Author:

Li Kaiyu,Zhang Lingxian,Li Bo,Li Shufei,Ma Juncheng

Abstract

Abstract Background Automatic and accurate estimation of disease severity is critical for disease management and yield loss prediction. Conventional disease severity estimation is performed using images with simple backgrounds, which is limited in practical applications. Thus, there is an urgent need to develop a method for estimating the disease severity of plants based on leaf images captured in field conditions, which is very challenging since the intensity of sunlight is constantly changing, and the image background is complicated. Results This study developed a simple and accurate image-based disease severity estimation method using an optimized neural network. A hybrid attention and transfer learning optimized semantic segmentation model was proposed to obtain the disease segmentation map. The severity was calculated by the ratio of lesion pixels to leaf pixels. The proposed method was validated using cucumber downy mildew, and powdery mildew leaves collected under natural conditions. The results showed that hybrid attention with the interaction of spatial attention and channel attention can extract fine lesion and leaf features, and transfer learning can further improve the segmentation accuracy of the model. The proposed method can accurately segment healthy leaves and lesions (MIoU = 81.23%, FWIoU = 91.89%). In addition, the severity of cucumber leaf disease was accurately estimated (R2 = 0.9578, RMSE = 1.1385). Moreover, the proposed model was compared with six different backbones and four semantic segmentation models. The results show that the proposed model outperforms the compared models under complex conditions, and can refine lesion segmentation and accurately estimate the disease severity. Conclusions The proposed method was an efficient tool for disease severity estimation in field conditions. This study can facilitate the implementation of artificial intelligence for rapid disease severity estimation and control in agriculture.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3