A Two-Stage Approach to the Study of Potato Disease Severity Classification

Author:

Xu Yanlei1,Gao Zhiyuan1ORCID,Wang Jingli2,Zhou Yang1,Li Jian1,Meng Xianzhang2

Affiliation:

1. College of Information and Technology, Jilin Agricultural University, Changchun 130118, China

2. College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China

Abstract

Early blight and late blight are two of the most prevalent and severe diseases affecting potato crops. Efficient and accurate grading of their severity is crucial for effective disease management. However, existing grading methods are limited to assessing the severity of each disease independently, often resulting in low recognition accuracy and slow grading processes. To address these challenges, this study proposes a novel two-stage approach for the rapid severity grading of both early blight and late blight in potato plants. In this research, two lightweight models were developed: Coformer and SegCoformer. In the initial stage, Coformer efficiently categorizes potato leaves into three classes: those afflicted by early blight, those afflicted by late blight, and healthy leaves. In the subsequent stage, SegCoformer accurately segments leaves, lesions, and backgrounds within the images obtained from the first stage. Furthermore, it assigns severity labels to the identified leaf lesions. To validate the accuracy and processing speed of the proposed methods, we conduct experimental comparisons. The experimental results indicate that Coformer achieves a classification accuracy as high as 97.86%, while SegCoformer achieves an mIoU of 88.50% for semantic segmentation. The combined accuracy of this method reaches 84%, outperforming the Sit + Unet_V accuracy by 1%. Notably, this approach achieves heightened accuracy while maintaining a faster processing speed, completing image processing in just 258.26 ms. This research methodology effectively enhances agricultural production efficiency.

Funder

Jilin Provincial Science and Technology Development Plan Project

Publisher

MDPI AG

Reference43 articles.

1. Qu, D., Xie, K., Jin, L., Pang, W., Bian, C., and Duan, S. (2005). Development of China’s potato industry and food safety. Sci. Agric. Sin., 358–362.

2. Potato processing industry in China: Current scenario, future trends and global impact;Wang;Potato Res.,2023

3. Potatoes, nutrition and health;Beals;Am. J. Potato Res.,2019

4. Introduction to 2013 symposium on bacterial diseases of potatoes;Kirk;Am. J. Potato Res.,2015

5. Identification of QTL associated with plant vine characteristics and infection response to late blight, early blight, and Verticillium wilt in a tetraploid potato population derived from late blight-resistant Palisade Russet;Park;Front. Plant Sci.,2023

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3