Author:
Naing Aung Htay,Kyu Swum Yi,Pe Phyo Phyo Win,Park Kyeung Il,Lee Je Min,Lim Ki Byung,Kim Chang Kil
Abstract
Abstract
Background
Past research has shown that virus-induced phytoene desaturase (PDS) gene silencing via agroinjection in the attached and detached fruit of tomato plants results in a pale-yellow fruit phenotype. Although the PDS gene is often used as a marker for gene silencing in tomatoes, little is known about the role of PDS in fruit ripening. In this study, we investigated whether the pepper PDS gene silenced endogenous PDS genes in the fruit of two tomato cultivars, Dotaerang Plus and Legend Summer.
Results
We found that the pepper PDS gene successfully silenced endogenous PDS in tomato fruit at a silencing frequency of 100% for both cultivars. A pale-yellow silenced area was observed over virtually the entire surface of individual fruit due to the transcriptional reduction in phytoene desaturase (PDS), zeta-carotene (ZDS), prolycopene isomerase (CrtlSO), and beta-carotene hydroxylase (CrtR-b2), which are the carotenoid biosynthesis genes responsible for the red coloration in tomatoes. PDS silencing also affected the expression levels of the fruit-ripening genes Tomato AGAMOUS-LIKE1 (TAGL1), RIPENING INHIBITOR (RIN), pectin esterase gene (PE), lipoxygenase (LOX), FRUITFULL1/FRUITFUL2 (FUL1/FUL2), and the ethylene biosynthesis and response genes 1-aminocyclopropane-1-carboxylate oxidase 1 and 3 (ACO1 and ACO3) and ethylene-responsive genes (E4 and E8).
Conclusion
These results suggest that PDS is a positive regulator of ripening in tomato fruit, which must be considered when using it as a marker for virus-induced gene silencing (VIGS) experiments in order to avoid fruit-ripening side effects.
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Reference40 articles.
1. Kumagi MH, Donson J, Della-Cioppa G, Harvey D, Hanley K, Grill LK. Cytoplamic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci. 1995;92:1679–83.
2. Benedito VA, Visser PB, Angenent GC, Krens FA. The potential of virus-induced gene silencing for speeding up functional characterization of plant genes. Genet Mol Res. 2004;3:323–41.
3. Anand A, Vaghchhipawala Z, Ryu CM, Kang L, Wang K, del-Pozo O, Martin GB, Mysore KS. Identification and characterization of plant genes involved in Agrobacterium-mediated plant transformation by virus-induced gene silencing. MPMI. 2007;187:41–5.
4. Senthil-Kumar M, Hema R, Anand A, Kang L, Udayakumar M, Mysore KS. A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing. New Phytol. 2007;176:782–91.
5. Becker A, Lange M. VIGS genomics goes functional. Trends Plant Sci. 2009;15:1–4.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献