Abstract
Abstract
Background
Some plastid-derived metabolites can control nuclear gene expression, chloroplast biogenesis, and chlorophyll biosynthesis. For example, norflurazon (NFZ) induced inhibition of carotenoid biosynthesis in leaves elicits a protoporphyrin IX (Mg-ProtoIX) retrograde signal that controls chlorophyll biosynthesis and chloroplast development. Carotenoid cleavage products, known as apocarotenoids, also regulate plastid development. The key steps in carotenoid biosynthesis or catabolism that can regulate chlorophyll biosynthesis in leaf tissues remain unclear. Here, we established a foliar pigment-based bioassay using Arabidopsis rosette leaves to investigate plastid signalling processes in young expanding leaves comprising rapidly dividing and expanding cells containing active chloroplast biogenesis.
Results
We demonstrate that environmental treatments (extended darkness and cold exposure) as well as chemical (norflurazon; NFZ) inhibition of carotenoid biosynthesis, reduce chlorophyll levels in young, but not older leaves of Arabidopsis. Mutants with disrupted xanthophyll accumulation, apocarotenoid phytohormone biosynthesis (abscisic acid and strigolactone), or enzymatic carotenoid cleavage, did not alter chlorophyll levels in young or old leaves. However, perturbations in acyclic cis-carotene biosynthesis revealed that disruption of CAROTENOID ISOMERASE (CRTISO), but not ZETA-CAROTENE ISOMERASE (Z-ISO) activity, reduced chlorophyll levels in young leaves of Arabidopsis plants. NFZ-induced inhibition of PHYTOENE DESATURASE (PDS) activity caused higher phytoene accumulation in younger crtiso leaves compared to WT indicating a continued substrate supply from the methylerythritol 4-phosphate (MEP) pathway.
Conclusion
The Arabidopsis foliar pigment-based bioassay can be used to differentiate signalling events elicited by environmental change, chemical treatment, and/or genetic perturbation, and determine how they control chloroplast biogenesis and chlorophyll biosynthesis. Genetic perturbations that impaired xanthophyll biosynthesis and/or carotenoid catabolism did not affect chlorophyll biosynthesis. The lack of CAROTENOID ISOMERISATION reduced chlorophyll accumulation, but not phytoene biosynthesis in young leaves of Arabidopsis plants growing under a long photoperiod. Findings generated using the newly customised foliar pigment-based bioassay implicate that carotenoid isomerase activity and NFZ-induced inhibition of PDS activity elicit different signalling pathways to control chlorophyll homeostasis in young leaves of Arabidopsis.
Funder
Australian Research Council
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Reference71 articles.
1. Alagoz Y, Dhami N, Mitchell C, Cazzonelli CI. cis/trans Carotenoid Extraction, Purification, Detection, Quantification, and Profiling in Plant Tissues. Plant and Food Carotenoids: Springer; 2020.
2. Anwar S, Nayak J, Alagoz Y, Wojtalewicz D, Cazzonelli CI. Purification and use of carotenoid standards to quantify cis-trans geometrical carotenoid isomers in plant tissues. In: Wurtzel ET, editor. Methods in Enzymology Carotenoids Carotenoid and apocarotenoid analysis. New York: Elsevier; 2022.
3. Ashraf MA, Rahman A. Cold stress response in Arabidopsis thaliana is mediated by GNOM ARF-GEF. Plant J. 2019;97:500–16.
4. Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, Dellapenna D, McCarty DR, Klee HJ. Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J. 2006;45:982–93.
5. Avendano-Vazquez AO, Cordoba E, Llamas E. An uncharacterized apocarotenoid-derived signal generated in zeta-Carotene desaturase mutants regulates leaf development and the expression of chloroplast and nuclear genes in Arabidopsis. Plant Cell. 2014;26:2524–37.