An optimised CRISPR/Cas9 protocol to create targeted mutations in homoeologous genes and an efficient genotyping protocol to identify edited events in wheat

Author:

Cui Xiucheng,Balcerzak Margaret,Schernthaner Johann,Babic Vivijan,Datla Raju,Brauer Elizabeth K.,Labbé Natalie,Subramaniam Rajagopal,Ouellet ThérèseORCID

Abstract

Abstract Background Targeted genome editing using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system has been applied in a large number of plant species. Using a gene-specific single guide RNA (sgRNA) and the CRISPR/Cas9 system, small editing events such as deletions of few bases can be obtained. However larger deletions are required for some applications. In addition, identification and characterization of edited events can be challenging in plants with complex genomes, such as wheat. Results In this study, we used the CRISPR/Cas9 system and developed a protocol that yielded high number of large deletions employing a pair of co-expressed sgRNA to target the same gene. The protocol was validated by targeting three genes, TaABCC6, TaNFXL1 and TansLTP9.4 in a wheat protoplast assay. Deletions of sequences located between the two sgRNA in each gene were the most frequent editing events observed for two of the three genes. A comparative assessment of editing frequencies between a codon-optimized Cas9 for expression in algae, crCas9, and a plant codon-optimized Cas9, pcoCas9, showed more consistent results with the vector expressing pcoCas9. Editing of TaNFXL1 by co-expression of sgRNA pair was investigated in transgenic wheat plants. Given the ploidy of bread wheat, a rapid, robust and inexpensive genotyping protocol was also adapted for hexaploid genomes and shown to be a useful tool to identify homoeolog-specific editing events in wheat. Conclusions Co-expressed pairs of sgRNA targeting single genes in conjunction with the CRISPR/Cas9 system produced large deletions in wheat. In addition, a genotyping protocol to identify editing events in homoeologs of TaNFXL1 was successfully adapted.

Funder

Agriculture and Agri-Food Canada

National Research Council Canada

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3