Rapid identification of mutations caused by fast neutron bombardment in Medicago truncatula

Author:

Du Huan,Jiao Zhicheng,Liu Junjie,Huang Wei,Ge LiangfaORCID

Abstract

Abstract Background Fast neutron bombardment (FNB) is a very effective approach for mutagenesis and has been widely used in generating mutant libraries in many plant species. The main type of mutations of FNB mutants are deletions of DNA fragments ranging from few base pairs to several hundred kilobases, thus usually leading to the null mutation of genes. Despite its efficiency in mutagenesis, identification of the mutation sites is still challenging in many species. The traditional strategy of positional cloning is very effective in identifying the mutation but time-consuming. With the availability of genome sequences, the array-based comparative genomic hybridization (CGH) method has been developed to detect the mutation sites by comparing the signal intensities of probes between wild-type and mutant plants. Though CGH method is effective in detecting copy number variations (CNVs), the resolution and coverage of CGH probes are not adequate to identify mutations other than CNVs. Results We report a new strategy and pipeline to sensitively identify the mutation sites of FNB mutants by combining deep-coverage whole-genome sequencing (WGS), polymorphism calling, and customized filtering in Medicago truncatula. Initially, we performed a bulked sequencing for a FNB white nodule (wn) mutant and its wild-type like plants derived from a backcross population. Following polymorphism calling and filtering, validation by manual check and Sanger sequencing, we identified that SymCRK is the causative gene of white nodule mutant. We also sequenced an individual FNB mutant yellow leaves 1 (yl1) and wild-type plant. We identified that ETHYLENE-DEPENDENT GRAVITROPISM-DEFICIENT AND YELLOW-GREEN 1 (EGY1) is the candidate gene for M. truncatula yl1 mutant. Conclusion Our results demonstrated that the method reported here is rather robust in identifying the mutation sites for FNB mutants.

Funder

National Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3