Improved weed segmentation in UAV imagery of sorghum fields with a combined deblurring segmentation model

Author:

Genze Nikita,Wirth Maximilian,Schreiner Christian,Ajekwe Raymond,Grieb Michael,Grimm Dominik G.

Abstract

Abstract Background Efficient and site-specific weed management is a critical step in many agricultural tasks. Image captures from drones and modern machine learning based computer vision methods can be used to assess weed infestation in agricultural fields more efficiently. However, the image quality of the captures can be affected by several factors, including motion blur. Image captures can be blurred because the drone moves during the image capturing process, e.g. due to wind pressure or camera settings. These influences complicate the annotation of training and test samples and can also lead to reduced predictive power in segmentation and classification tasks. Results In this study, we propose , a combined deblurring and segmentation model for weed and crop segmentation in motion blurred images. For this purpose, we first collected a new dataset of matching sharp and naturally blurred image pairs of real sorghum and weed plants from drone images of the same agricultural field. The data was used to train and evaluate the performance of on both sharp and blurred images of a hold-out test-set. We show that outperforms a standard segmentation model that does not include an integrated deblurring step, with a relative improvement of $$13.4 \%$$ 13.4 % in terms of the Sørensen-Dice coefficient. Conclusion Our combined deblurring and segmentation model is able to accurately segment weeds from sorghum and background, in both sharp as well as motion blurred drone captures. This has high practical implications, as lower error rates in weed and crop segmentation could lead to better weed control, e.g. when using robots for mechanical weed removal.

Funder

Bavarian State Ministry for Food, Agriculture and Forests

Hochschule Weihenstephan-Triesdorf

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3