AC-UNet: an improved UNet-based method for stem and leaf segmentation in Betula luminifera

Author:

Yi Xiaomei,Wang Jiaoping,Wu Peng,Wang Guoying,Mo Lufeng,Lou Xiongwei,Liang Hao,Huang Huahong,Lin Erpei,Maponde Brian Tapiwanashe,Lv Chaihui

Abstract

Plant phenotypic traits play an important role in understanding plant growth dynamics and complex genetic traits. In phenotyping, the segmentation of plant organs, such as leaves and stems, helps in automatically monitoring growth and improving screening efficiency for large-scale genetic breeding. In this paper, we propose an AC-UNet stem and leaf segmentation algorithm based on an improved UNet. This algorithm aims to address the issues of feature edge information loss and sample breakage in the segmentation of plant organs, specifically in Betula luminifera. The method replaces the backbone feature extraction network of UNet with VGG16 to reduce the redundancy of network information. It adds a multi-scale mechanism in the splicing part, an optimized hollow space pyramid pooling module, and a cross-attention mechanism in the expanding network part at the output end to obtain deeper feature information. Additionally, Dice_Boundary is introduced as a loss function in the back-end of the algorithm to circumvent the sample distribution imbalance problem. The PSPNet model achieves mIoU of 58.76%, mPA of 73.24%, and Precision of 66.90%, the DeepLabV3 model achieves mIoU of 82.13%, mPA of 91.47%, and Precision of 87.73%, on the data set. The traditional UNet model achieves mIoU of 84.45%, mPA of 91.11%, and Precision of 90.63%, and the Swin-UNet model achieves . The mIoU is 79.02%, mPA is 85.99%, and Precision is 88.73%. The AC-UNet proposed in this article achieved excellent performance on the Swin-UNet dataset, with mIoU, mPA, and Precision of 87.50%, 92.71%, and 93.69% respectively, which are better than the selected PSPNet, DeepLabV3, traditional UNet, and Swin-UNet. Commonly used semantic segmentation algorithms. Experiments show that the algorithm in this paper can not only achieve efficient segmentation of the stem and leaves of Betula luminifera but also outperforms the existing state-of-the-art algorithms in terms of both speed. This can provide more accurate auxiliary support for the subsequent acquisition of plant phenotypic traits.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference29 articles.

1. asmine flower segmentation: A superpixel based approach;Abinaya,2016

2. Swin-unet: unet-like pure transformer for medical image segmentation;Cao;Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),2021

3. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs;Chen;IEEE Trans. Pattern Anal. Mach. Intell.,2018

4. ChenL.-C. PapandreouG. SchroffF. AdamH. Rethinking atrous convolution for semantic image segmentation2017

5. ImageNet: A large-scale hierarchical image database;Deng,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3