Development of a highly efficient virus-free regeneration system of Salvia miltiorrhiza from Sichuan using apical meristem as explants

Author:

Yao Si Cheng,Jiang Yuan Yuan,Ni Su,Wang Long,Feng Jun,Yang Rui Wu,Yang Li Xia,Len Qiu Yan,Zhang LiORCID

Abstract

Abstract Bcakground The dry root and rhizome of Salvia miltiorrhiza are used to treat cardiovascular diseases, chronic pain, and thoracic obstruction over 2000 years in Asian countries. For high quality, Sichuan Zhongjiang is regarded as the genuine producing area of S. miltiorrhiza. Given its abnormal pollen development, S. miltiorrhiza from Sichuan (S.m.-SC) relies on root reproduction and zymad accumulation; part of diseased plants present typical viral disease symptoms and seed quality degeneration. This study aim to detected unknown viruses from mosaic-diseased plants and establish a highly efficient virus-free regeneration system to recover germplasm properties. Results Tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) were detected from mosaic-diseased plants. Primary apical meristem with two phyllo podium in 0.15–0.5 mm peeled from diseased plants were achieved 73.33% virus-free rate. The results showed that the medium containing MS, 0.5 mg/L 6-BA, 0.1 mg/L NAA, 0.1 mg/L GA3, 30 g/L sucrose and 7.5 g/L agar can achieve embryonic-tissue (apical meristem, petiole and leaf callus) high efficient organogenesis. For callus induction, the optimal condition was detected on the medium containing MS, 2 mg/L TDZ, 0.1 mg/L NAA by using secondary petiole of virus-free plants under 24 h dark/d condition for 21 d. The optimal system for root induction was the nutrient solution with 1/2 MS supplemented with 1 mg/L NAA. After transplant, the detection of agronomic metric and salvianolic acid B content confirmed the great germplasm properties of S.m.-SC virus-free plants. Conclusions A highly efficient virus-free regeneration system of S.m.-SC was established based on the detected viruses to recover superior seed quality. The proposed system laid support to control disease spread, recover good germplasm properties in S.m.-SC.

Funder

Sichuan Veterinary Medicine and Drug Innovation Group of China Agricultural Research System

the Sichuan Science and Technology Program

the Sichuan Crops and Animals Breeding Special Project

the Sichuan Agricultural University funding

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3