A comparative study on point cloud down-sampling strategies for deep learning-based crop organ segmentation

Author:

Li Dawei,Wei Yongchang,Zhu Rongsheng

Abstract

AbstractThe 3D crop data obtained during cultivation is of great significance to screening excellent varieties in modern breeding and improvement on crop yield. With the rapid development of deep learning, researchers have been making innovations in aspects of both data preparation and deep network design for segmenting plant organs from 3D data. Training of the deep learning network requires the input point cloud to have a fixed scale, which means all point clouds in the batch should have similar scale and contain the same number of points. A good down-sampling strategy can reduce the impact of noise and meanwhile preserve the most important 3D spatial structures. As far as we know, this work is the first comprehensive study of the relationship between multiple down-sampling strategies and the performances of popular networks for plant point clouds. Five down-sampling strategies (including FPS, RS, UVS, VFPS, and 3DEPS) are cross evaluated on five different segmentation networks (including PointNet +  + , DGCNN, PlantNet, ASIS, and PSegNet). The overall experimental results show that currently there is no strict golden rule on fixing down-sampling strategy for a specific mainstream crop deep learning network, and the optimal down-sampling strategy may vary on different networks. However, some general experience for choosing an appropriate sampling method for a specific network can still be summarized from the qualitative and quantitative experiments. First, 3DEPS and UVS are easy to generate better results on semantic segmentation networks. Second, the voxel-based down-sampling strategies may be more suitable for complex dual-function networks. Third, at 4096-point resolution, 3DEPS usually has only a small margin compared with the best down-sampling strategy at most cases, which means 3DEPS may be the most stable strategy across all compared. This study not only helps to further improve the accuracy of point cloud deep learning networks for crop organ segmentation, but also gives clue to the alignment of down-sampling strategies and a specific network.

Funder

Shanghai Rising-Star Program

National Key Research and Development Program of China

Research and Application of Key Technologies for Intelligent Farming Decision Platform of Heilongjiang Province of China

Natural Science Foundation of Heilongjiang Province

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating the impact of different point cloud sampling techniques on digital elevation model accuracy – a case study of Kituro, Kenya;Earth Science Informatics;2024-08-19

2. Unsupervised shape-aware SOM down-sampling for plant point clouds;ISPRS Journal of Photogrammetry and Remote Sensing;2024-05

3. Adaptive Automotive Chassis Welding Joint Inspection Using a Cobot and a Multi-modal Vision Sensor: Adaptive welding joint inspection robotic vision system;Proceedings of the 2024 Guangdong-Hong Kong-Macao Greater Bay Area International Conference on Digital Economy and Artificial Intelligence;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3