RGB image-based method for phenotyping rust disease progress in pea leaves using R

Author:

Osuna-Caballero Salvador,Olivoto Tiago,Jiménez-Vaquero Manuel A.,Rubiales Diego,Rispail Nicolas

Abstract

Abstract Background Rust is a damaging disease affecting vital crops, including pea, and identifying highly resistant genotypes remains a challenge. Accurate measurement of infection levels in large germplasm collections is crucial for finding new resistance sources. Current evaluation methods rely on visual estimation of disease severity and infection type under field or controlled conditions. While they identify some resistance sources, they are error-prone and time-consuming. An image analysis system proves useful, providing an easy-to-use and affordable way to quickly count and measure rust-induced pustules on pea samples. This study aimed to develop an automated image analysis pipeline for accurately calculating rust disease progression parameters under controlled conditions, ensuring reliable data collection. Results A highly efficient and automatic image-based method for assessing rust disease in pea leaves was developed using R. The method’s optimization and validation involved testing different segmentation indices and image resolutions on 600 pea leaflets with rust symptoms. The approach allows automatic estimation of parameters like pustule number, pustule size, leaf area, and percentage of pustule coverage. It reconstructs time series data for each leaf and integrates daily estimates into disease progression parameters, including latency period and area under the disease progression curve. Significant variation in disease responses was observed between genotypes using both visual ratings and image-based analysis. Among assessed segmentation indices, the Normalized Green Red Difference Index (NGRDI) proved fastest, analysing 600 leaflets at 60% resolution in 62 s with parallel processing. Lin’s concordance correlation coefficient between image-based and visual pustule counting showed over 0.98 accuracy at full resolution. While lower resolution slightly reduced accuracy, differences were statistically insignificant for most disease progression parameters, significantly reducing processing time and storage space. NGRDI was optimal at all time points, providing highly accurate estimations with minimal accumulated error. Conclusions A new image-based method for monitoring pea rust disease in detached leaves, using RGB spectral indices segmentation and pixel value thresholding, improves resolution and precision. It rapidly analyses hundreds of images with accuracy comparable to visual methods and higher than other image-based approaches. This method evaluates rust progression in pea, eliminating rater-induced errors from traditional methods. Implementing this approach to evaluate large germplasm collections will improve our understanding of plant-pathogen interactions and aid future breeding for novel pea cultivars with increased rust resistance.

Funder

Consejo Superior de Investigaciones Cientificas

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3