Automated discretization of ‘transpiration restriction to increasing VPD’ features from outdoors high-throughput phenotyping data

Author:

Kar Soumyashree,Tanaka Ryokei,Korbu Lijalem Balcha,Kholová Jana,Iwata Hiroyoshi,Durbha Surya S.,Adinarayana J.,Vadez VincentORCID

Abstract

Abstract Background Restricting transpiration under high vapor pressure deficit (VPD) is a promising water-saving trait for drought adaptation. However, it is often measured under controlled conditions and at very low throughput, unsuitable for breeding. A few high-throughput phenotyping (HTP) studies exist, and have considered only maximum transpiration rate in analyzing genotypic differences in this trait. Further, no study has precisely identified the VPD breakpoints where genotypes restrict transpiration under natural conditions. Therefore, outdoors HTP data (15 min frequency) of a chickpea population were used to automate the generation of smooth transpiration profiles, extract informative features of the transpiration response to VPD for optimal genotypic discretization, identify VPD breakpoints, and compare genotypes. Results Fifteen biologically relevant features were extracted from the transpiration rate profiles derived from load cells data. Genotypes were clustered (C1, C2, C3) and 6 most important features (with heritability > 0.5) were selected using unsupervised Random Forest. All the wild relatives were found in C1, while C2 and C3 mostly comprised high TE and low TE lines, respectively. Assessment of the distinct p-value groups within each selected feature revealed highest genotypic variation for the feature representing transpiration response to high VPD condition. Sensitivity analysis on a multi-output neural network model (with R of 0.931, 0.944, 0.953 for C1, C2, C3, respectively) found C1 with the highest water saving ability, that restricted transpiration at relatively low VPD levels, 56% (i.e. 3.52 kPa) or 62% (i.e. 3.90 kPa), depending whether the influence of other environmental variables was minimum or maximum. Also, VPD appeared to have the most striking influence on the transpiration response independently of other environment variable, whereas light, temperature, and relative humidity alone had little/no effect. Conclusion Through this study, we present a novel approach to identifying genotypes with drought-tolerance potential, which overcomes the challenges in HTP of the water-saving trait. The six selected features served as proxy phenotypes for reliable genotypic discretization. The wild chickpeas were found to limit water-loss faster than the water-profligate cultivated ones. Such an analytic approach can be directly used for prescriptive breeding applications, applied to other traits, and help expedite maximized information extraction from HTP data.

Funder

Bill and Melinda Gates Foundation

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3