A non-invasive method to predict drought survival in Arabidopsis using quantum yield under light conditions

Author:

Rico-Cambron Thelma Y.,Bello-Bello Elohim,Martínez Octavio,Herrera-Estrella Luis

Abstract

Abstract Background Survival rate (SR) is frequently used to compare drought tolerance among plant genotypes. While a variety of techniques for evaluating the stress status of plants under drought stress conditions have been developed, determining the critical point for the recovery irrigation to evaluate plant SR often relies directly on a qualitative inspection by the researcher or on the employment of complex and invasive techniques that invalidate the subsequent use of the tested individuals. Results Here, we present a simple, instantaneous, and non-invasive method to estimate the survival probability of Arabidopsis thaliana plants after severe drought treatments. The quantum yield (QY), or efficiency of photosystem II, was monitored in darkness (Fv/Fm) and light (Fv’/Fm’) conditions in the last phase of the drought treatment before recovery irrigation. We found a high correlation between a plant’s Fv’/Fm’ value before recovery irrigation and its survival phenotype seven days after, allowing us to establish a threshold between alive and dead plants in a calibration stage. This correlation was maintained in the Arabidopsis accessions Col-0, Ler-0, C24, and Kondara under the same conditions. Fv’/Fm’ was then applied as a survival predictor to compare the drought tolerance of transgenic lines overexpressing the transcription factors ATAF1 and PLATZ1 with the Col-0 control. Conclusions The results obtained in this work demonstrate that the chlorophyll a fluorescence parameter Fv’/Fm’ can be used as a survival predictor that gives a numerical estimate of the Arabidopsis drought SR before recovery irrigation. The procedure employed to get the Fv’/Fm’ measurements is fast, non-destructive, and requires inexpensive and easy-to-handle equipment. Fv’/Fm’ as a survival predictor can be used to offer an overview of the photosynthetic state of the tested plants and determine more accurately the best timing for rewatering to assess the SR, especially when the symptoms of severe dehydration between genotypes are not contrasting enough to identify a difference visually.

Funder

National Science Fopundation

Consejo Nacional de Ciencia y Tecnología

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Reference55 articles.

1. Wang Z, Li J, Lai C, Wang RY, Chen X, Lian Y. Drying tendency dominating the global grain production area. Glob Food Sect. 2018;16:138–49.

2. Ligtvoet W, Bouwman A, Knoop J, de Bruin S, Nabielek K, Huitzing H, et al. The geography of future water challenges. The Hague: PBL Netherlands Environmental Assessment Agency; 2018. https://www.pbl.nl/en/publications/the-geography-of-future-water-challenges. Accessed 28 March 2023.

3. Ahluwalia O, Singh PC, Bhatia R. A review on drought stress in plants: implications, mitigation and the role of plant growth promoting rhizobacteria. Resour Environ Sustain. 2021;5:100032.

4. Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S. Response mechanism of plants to drought stress. Horticulturae. 2021;7:50.

5. Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought. Science. 2020;368:266–9.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3