Author:
Purwadi Imam,Casey Lachlan W.,Ryan Chris G.,Erskine Peter D.,van der Ent Antony
Abstract
Abstract
Background
“Herbarium X-ray Fluorescence (XRF) Ionomics” is a new quantitative approach for extracting the elemental concentrations from herbarium specimens using handheld XRF devices. These instruments are principally designed for dense sample material of infinite thickness (such as rock or soil powder), and their built-in algorithms and factory calibrations perform poorly on the thin dry plant leaves encountered in herbaria. While empirical calibrations have been used for ‘correcting’ measured XRF values post hoc, this approach has major shortcomings. As such, a universal independent data analysis pipeline permitting full control and transparency throughout the quantification process is highly desirable. Here we have developed such a pipeline based on Dynamic Analysis as implemented in the GeoPIXE package, employing a Fundamental Parameters approach requiring only a description of the measurement hardware and derivation of the sample areal density, based on a universal standard.
Results
The new pipeline was tested on potassium, calcium, manganese, iron, cobalt, nickel, and zinc concentrations in dry plant leaves. The Dynamic Analysis method can correct for complex X-ray interactions and performs better than both the built-in instrument algorithms and the empirical calibration approach. The new pipeline is also able to identify and quantify elements that are not detected and reported by the device built-in algorithms and provides good estimates of elemental concentrations where empirical calibrations are not straightforward.
Conclusions
The new pipeline for processing XRF data of herbarium specimens has a greater accuracy and is more robust than the device built-in algorithms and empirical calibrations. It also gives access to all elements detected in the XRF spectrum. The new analysis pipeline has made Herbarium XRF approach even more powerful to study the metallome of existing plant collections.
Funder
Australian Government
University of Queensland
Agence Nationale de la Recherche
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献