Comparing portable x‐ray fluorescence spectroscopy instrumentation for metallome analysis of herbarium specimens

Author:

Purwadi Imam1,Erskine Peter D.1,Casey Lachlan W.2,van der Ent Antony134ORCID

Affiliation:

1. Centre for Mined Land Rehabilitation, Sustainable Minerals Institute The University of Queensland St Lucia Queensland Australia

2. Centre for Microscopy and Microanalysis The University of Queensland St Lucia Queensland Australia

3. Laboratory of Genetics Wageningen University and Research Wageningen The Netherlands

4. Université de Lorraine, INRAE, LSE Nancy France

Abstract

AbstractThe use of x‐ray fluorescence (XRF) instruments for metallome analysis of herbarium specimens to discover hyperaccumulator plant species has gained popularity, but a growing concern arises about intercomparability from the use of different instrument makes and models. Therefore, this study aimed to assess the performance and comparability of the results generated by three different XRF instruments and three different quantification methods (empirical calibration based on XRF versus inductively coupled plasma atomic emission spectroscopy [ICP‐AES] regression, in‐built manufacturer algorithms, and an independent GeoPIXE software pipeline based on Fundamental Parameters). Three instruments with distinct specifications were chosen to improve the generalizability of the results, ensuring relevance to a wide range of instruments that may be used in the future for metallome analysis of herbarium specimens. Each instrument was used to scan a representative set of dried hyperaccumulator plant leaf samples, and their accuracy in quantifying elemental concentrations was then compared. The manufacturer algorithms overestimate the elemental concentrations and have the highest errors. The empirical calibrations have the closest mean concentration to the mean concentrations reported by ICP‐AES, but can produce negative values. The independent pipeline performance is marginally better than the empirical calibration, but it takes substantially more time and effort to setup the Fundamental Parameters through reverse engineering the instrument hardware parameters. Using the GeoPIXE independent pipeline to extract the XRF peak intensity to use in the empirical calibration performs better than manufacturer algorithms, while avoiding the complicated setup requirements, and this should be considered for further development.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3