Abstract
Abstract
Background
Optimizing the somatic embryogenesis protocol can be considered as the first and foremost step in successful gene transformation studies. However, it is usually difficult to achieve an optimized embryogenesis protocol due to the cost and time-consuming as well as the complexity of this process. Therefore, it is necessary to use a novel computational approach, such as machine learning algorithms for this aim. In the present study, two machine learning algorithms, including Multilayer Perceptron (MLP) as an artificial neural network (ANN) and support vector regression (SVR), were employed to model somatic embryogenesis of chrysanthemum, as a case study, and compare their prediction accuracy.
Results
The results showed that SVR (R2 > 0.92) had better performance accuracy than MLP (R2 > 0.82). Moreover, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) was also applied for the optimization of the somatic embryogenesis and the results showed that the highest embryogenesis rate (99.09%) and the maximum number of somatic embryos per explant (56.24) can be obtained from a medium containing 9.10 μM 2,4-dichlorophenoxyacetic acid (2,4-D), 4.70 μM kinetin (KIN), and 18.73 μM sodium nitroprusside (SNP). According to our results, SVR-NSGA-II was able to optimize the chrysanthemum’s somatic embryogenesis accurately.
Conclusions
SVR-NSGA-II can be employed as a reliable and applicable computational methodology in future plant tissue culture studies.
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献