Layering contrasting photoselective filters improves the simulation of foliar shade

Author:

Petrella Dominic P.ORCID,Breuillin-Sessoms FlorenceORCID,Watkins EricORCID

Abstract

Abstract Background Neutral density shade cloth is commonly used for simulating foliar shade, in which it reduces light intensity without altering spectral quality. However, foliar shade also alters spectral quality, reducing the ratio of red to far-red (R:FR) light, altering the ratio of blue to green (B:G) light, and reducing ultraviolet light. Unlike shade cloth, photoselective filters can alter spectral quality, but the filters used in previous literature have not simulated foliar shade well. We examined the spectral quality of sunlight under color temperature blue (CTB), plus green (PG), and neutral density (ND) filters from LEE Filters, Rosco e-colour + and Cinegel brands either alone or layered, hypothesizing that the contrasting filter qualities would improve simulations. As a proof-of-concept, we collected spectral data under foliar shade to compare to data collected under photoselective filters. Results Under foliar shade reductions in the R:FR ratio ranged from 0.11 to 0.54 (~ 1.18 in full sun), while reductions in the B:G ratio were as low as 0.53 in deep shade, or were as high as 1.11 in moderate shade (~ 0.87 in full sun). Neutral density filters led to near-neutral reductions in photosynthetically active radiation and reduced the R:FR ratio similar to foliar shade. Color temperature blue filters simulated the increased B:G ratio observed under moderate foliar shade, but did not reduce the R:FR ratio low enough. On their own, PG filters did not simulate any type of foliar shade. Different brands of the same filter type also had disparate effects on spectral quality. Layered CTB and ND filters improved the accuracy of moderate foliar shade simulations, and layering CTB, PG, and ND filters led to accurate simulations of deep foliar shade. Conclusions Layering photoselective filters with contrasting effects on the spectral quality of sunlight results in more accurate simulations of foliar shade compared to when these filters are used separately. Layered filters can re-create the spectral motifs of moderate and deep foliar shade; they could be used to simulate shade scenarios found in different cropping systems. Photoselective filters offer numerous advantages over neutral density shade cloth and could be a direct replacement for researchers currently using neutral density shade cloth.

Funder

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3