Affiliation:
1. Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
2. Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50100, Thailand
Abstract
Purple rice (Oryza sativa L.) contains anthocyanin, which acts as an antioxidant and functional food for humans. The levels of anthocyanin growth and production in rice are mainly controlled by the availability of light. However, shade can affect anthocyanin biosynthesis genes. Therefore, the objective of this study was to determine the yield and anthocyanin content among four purple rice varieties, which provide the difference in colors of purple and green leaves. This study also evaluated gene expression affected by shading treatment to understand the relation of grain anthocyanin and expression level. This research was conducted using a split plot design using four levels of shading (levels of shading from anthesis to maturity) with three replications, no shading, 30% shading, 50% shading, and 70% shading, as the main plots and purple rice varieties as subplots, KJ CMU-107, K2, K4, and KDK10, from anthesis to maturity. Shading significantly decreased yield and yield components, but increased grain anthocyanin content. Nonetheless, the response of yield and grain anthocyanin content to shading did not show a significant different between purple and green leaf varieties. In addition, the level of OsDFR gene expression was different depending on the shading level in four rice varieties. The OsDFR gene presented the highest expression at shading levels of 30% for K4 and 50% for KDK10, while the expression of the OsDFR gene was not detected in the purple rice varieties with green leaves (KJ CMU-107 and K2). The response of grain anthocyanin and gene expression of OsDFR to light treatment did not show significantly differences between the purple and green leaf varieties, suggesting that the appearance of anthocyanin in leaves might be not related to anthocyanin synthesis in the grain. Taken together, the results suggest that some purple rice varieties were more suitable for planting under low light intensity based on a lower level of grain yield loss, strong shade tolerance, and high anthocyanin content in leaf and grain pericarp. However, it is necessary to explore the effects of light intensity on genes and intermediates in the anthocyanin synthesis pathway for further study.
Funder
Agricultural Research Development Agency
Chiang Mai University
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献