Nutrient solutions for Arabidopsis thaliana: a study on nutrient solution composition in hydroponics systems

Author:

van Delden Sander H.ORCID,Nazarideljou Mohammad Javad,Marcelis Leo F. M.

Abstract

Abstract Background There is little information on the effect of nutrient solutions composition on Arabidopsis growth. Therefore, we compared growth performance of Arabidopsis thaliana (Col-0) grown on the most commonly used nutrient solutions in deep water culture: Hoagland and Arnon, Murashige and Skoog, Tocquin, Hermans, and Conn. In addition to these nutrient solution composition experiments, we established Arabidopsis growth response curves for nutrient solution concentration and salt stress (NaCl). Results Arabidopsis rosette fresh and dry weight showed an approximate linear decline with NaCl dose in deep water culture, i.e. 9% reduction relative to control per unit of electrical conductivity (EC in dS m−1, for scale comprehension 1 dS m−1 equals ~ 10 mM NaCl). The Tocquin, ½Hoagland and Conn nutrient solutions had equal and optimal growth performance. Optimal nutrient solution concentration for Tocquin and Hoagland was 0.8 to 0.9 dS m−1. Close to the EC of ½Hoagland (1.1 dS m−1), which is frequently used in Arabidopsis research. Conn solution showed optimal growth at much higher EC (2 dS m−1) indicating that it is a balanced nutrient solution that matches the needs of Arabidopsis. Full Murashige and Skoog solution (5.9 dS m−1) was lethal and diluted solutions (EC of 1.6 and 1.1 dS m−1) caused stress symptoms and severe growth retardation at later developmental stages. Conclusions Arabidopsis thaliana (Col-0) plants grown in deep water culture showed a sixfold growth difference when commonly used nutrient solutions were compared. Murashige and Skoog solution should not be used as nutrient solution in deep water culture. Conn, Tocquin and ½Hoagland are balanced nutrient solutions which result in optimal Arabidopsis growth in hydroponic systems.

Funder

Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3