Abstract
Abstract
Background
There is little information on the effect of nutrient solutions composition on Arabidopsis growth. Therefore, we compared growth performance of Arabidopsis thaliana (Col-0) grown on the most commonly used nutrient solutions in deep water culture: Hoagland and Arnon, Murashige and Skoog, Tocquin, Hermans, and Conn. In addition to these nutrient solution composition experiments, we established Arabidopsis growth response curves for nutrient solution concentration and salt stress (NaCl).
Results
Arabidopsis rosette fresh and dry weight showed an approximate linear decline with NaCl dose in deep water culture, i.e. 9% reduction relative to control per unit of electrical conductivity (EC in dS m−1, for scale comprehension 1 dS m−1 equals ~ 10 mM NaCl). The Tocquin, ½Hoagland and Conn nutrient solutions had equal and optimal growth performance. Optimal nutrient solution concentration for Tocquin and Hoagland was 0.8 to 0.9 dS m−1. Close to the EC of ½Hoagland (1.1 dS m−1), which is frequently used in Arabidopsis research. Conn solution showed optimal growth at much higher EC (2 dS m−1) indicating that it is a balanced nutrient solution that matches the needs of Arabidopsis. Full Murashige and Skoog solution (5.9 dS m−1) was lethal and diluted solutions (EC of 1.6 and 1.1 dS m−1) caused stress symptoms and severe growth retardation at later developmental stages.
Conclusions
Arabidopsis thaliana (Col-0) plants grown in deep water culture showed a sixfold growth difference when commonly used nutrient solutions were compared. Murashige and Skoog solution should not be used as nutrient solution in deep water culture. Conn, Tocquin and ½Hoagland are balanced nutrient solutions which result in optimal Arabidopsis growth in hydroponic systems.
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献