NRTPredictor: identifying rice root cell state in single-cell RNA-seq via ensemble learning

Author:

Wang Hao,Lin Yu-Nan,Yan Shen,Hong Jing-Peng,Tan Jia-Rui,Chen Yan-Qing,Cao Yong-Sheng,Fang Wei

Abstract

Abstract Background Single-cell RNA sequencing (scRNA-seq) measurements of gene expression show great promise for studying the cellular heterogeneity of rice roots. How precisely annotating cell identity is a major unresolved problem in plant scRNA-seq analysis due to the inherent high dimensionality and sparsity. Results To address this challenge, we present NRTPredictor, an ensemble-learning system, to predict rice root cell stage and mine biomarkers through complete model interpretability. The performance of NRTPredictor was evaluated using a test dataset, with 98.01% accuracy and 95.45% recall. With the power of interpretability provided by NRTPredictor, our model recognizes 110 marker genes partially involved in phenylpropanoid biosynthesis. Expression patterns of rice root could be mapped by the above-mentioned candidate genes, showing the superiority of NRTPredictor. Integrated analysis of scRNA and bulk RNA-seq data revealed aberrant expression of Epidermis cell subpopulations in flooding, Pi, and salt stresses. Conclusion Taken together, our results demonstrate that NRTPredictor is a useful tool for automated prediction of rice root cell stage and provides a valuable resource for deciphering the rice root cellular heterogeneity and the molecular mechanisms of flooding, Pi, and salt stresses. Based on the proposed model, a free webserver has been established, which is available at https://www.cgris.net/nrtp.

Funder

National Nature Scientific Foundation of China

The Central Public-interest Scientific Institution Basal Research Fund of China

The Agricultural Science and Technology Innovation Program

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3