PlantMine: A Machine-Learning Framework to Detect Core SNPs in Rice Genomics

Author:

Tong Kai1,Chen Xiaojing23,Yan Shen4,Dai Liangli1,Liao Yuxue1,Li Zhaoling1,Wang Ting56

Affiliation:

1. School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China

2. National Agriculture Science Data Center, Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3. National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China

4. State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

5. Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China

6. Key Laboratory of Big Agri-Data, Ministry of Agriculture and Rural Areas, Beijing 100081, China

Abstract

As a fundamental global staple crop, rice plays a pivotal role in human nutrition and agricultural production systems. However, its complex genetic architecture and extensive trait variability pose challenges for breeders and researchers in optimizing yield and quality. Particularly to expedite breeding methods like genomic selection, isolating core SNPs related to target traits from genome-wide data reduces irrelevant mutation noise, enhancing computational precision and efficiency. Thus, exploring efficient computational approaches to mine core SNPs is of great importance. This study introduces PlantMine, an innovative computational framework that integrates feature selection and machine learning techniques to effectively identify core SNPs critical for the improvement of rice traits. Utilizing the dataset from the 3000 Rice Genomes Project, we applied different algorithms for analysis. The findings underscore the effectiveness of combining feature selection with machine learning in accurately identifying core SNPs, offering a promising avenue to expedite rice breeding efforts and improve crop productivity and resilience to stress.

Funder

National Natural Science Foundation of China

Open Project Program of the Key Laboratory of Agricultural Big Data, Ministry of Agriculture and Rural Affairs

Publisher

MDPI AG

Reference27 articles.

1. The rice genome revolution: From an ancient grain to Green Super Rice;Wing;Nat. Rev. Genet.,2018

2. Strategies for feeding the world more sustainably with organic agriculture;Muller;Nat. Commun.,2017

3. Global food security: Challenges and policies;Rosegrant;Science,2003

4. The history and prospect of rice genetic breeding in China;Wu;Yi Chuan,2018

5. SNP identification in crop plants;Ganal;Curr. Opin. Plant Biol.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3