Abstract
Abstract
Background
Although the genome for the allotetraploid bioenergy crop switchgrass (Panicum virgatum) has been established, limitations in mutant resources have hampered in planta gene function studies toward crop optimization. Virus-induced gene silencing (VIGS) is a versatile technique for transient genetic studies. Here we report the implementation of foxtail mosaic virus (FoMV)-mediated gene silencing in switchgrass in above- and below-ground tissues and at different developmental stages.
Results
The study demonstrated that leaf rub-inoculation is a suitable method for systemic gene silencing in switchgrass. For all three visual marker genes, Magnesium chelatase subunit D (ChlD) and I (ChlI) as well as phytoene desaturase (PDS), phenotypic changes were observed in leaves, albeit at different intensities. Gene silencing efficiency was verified by RT-PCR for all tested genes. Notably, systemic gene silencing was also observed in roots, although silencing efficiency was stronger in leaves (~ 63–94%) as compared to roots (~ 48–78%). Plants at a later developmental stage were moderately less amenable to VIGS than younger plants, but also less perturbed by the viral infection.
Conclusions
Using FoMV-mediated VIGS could be achieved in switchgrass leaves and roots, providing an alternative approach for studying gene functions and physiological traits in this important bioenergy crop.
Funder
Deutsche Forschungsgemeinschaft
U.S. Department of Energy
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献