Affiliation:
1. Department of Plant Pathology, Entomology, and Microbiology Iowa State University Ames Iowa USA
2. Department of Biology University of Manitoba Winnipeg Manitoba Canada
Abstract
AbstractMany plant viruses have been engineered into vectors for use in functional genomics studies, expression of heterologous proteins, and, most recently, gene editing applications. The use of viral vectors overcomes bottlenecks associated with mutagenesis and transgenesis approaches often implemented for analysis of gene function. There are several engineered viruses that are demonstrated or suggested to be useful in maize through proof‐of‐concept studies. However, foxtail mosaic virus (FoMV), which has a relatively broad host range, is emerging as a particularly useful virus for gene function studies in maize and other monocot crop or weed species. A few clones of FoMV have been independently engineered, and they have different features and capabilities for virus‐induced gene silencing (VIGS) and virus‐mediated overexpression (VOX) of proteins. In addition, FoMV can be used to deliver functional guide RNAs in maize and other plants expressing the Cas9 protein, demonstrating its potential utility in virus‐induced gene editing applications. There is a growing number of studies in which FoMV vectors are being applied for VIGS or VOX in maize and the vast majority of these are related to maize–microbe interactions. In this review, we highlight the biology and engineering of FoMV as well as its applications in maize–microbe interactions and more broadly in the context of the monocot functional genomics toolbox.
Funder
National Institute of Food and Agriculture
Subject
Plant Science,Soil Science,Agronomy and Crop Science,Molecular Biology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献