Abstract
Abstract
Background
Almond is an emerging crop due to the health benefits of almond consumption including nutritional, anti-inflammatory, and hypocholesterolaemia properties. Traditional almond producers were concentrated in California, Australia, and Mediterranean countries. However, almond is currently present in more than 50 countries due to breeding programs have modernized almond orchards by developing new varieties with improved traits related to late flowering (to reduce the risk of damage caused by late frosts) and tree architecture. Almond tree architecture and flowering are acquired and evaluated through intensive field labour for breeders. Flowering detection has traditionally been a very challenging objective. To our knowledge, there is no published information about monitoring of the tree flowering dynamics of a crop at the field scale by using color information from photogrammetric 3D point clouds and OBIA. As an alternative, a procedure based on the generation of colored photogrammetric point clouds using a low cost (RGB) camera on-board an unmanned aerial vehicle (UAV), and an semi-automatic object based image analysis (OBIA) algorithm was created for monitoring the flower density and flowering period of every almond tree in the framework of two almond phenotypic trials with different planting dates.
Results
Our method was useful for detecting the phenotypic variability of every almond variety by mapping and quantifying every tree height and volume as well as the flowering dynamics and flower density. There was a high level of agreement among the tree height, flower density, and blooming calendar derived from our procedure on both fields with the ones created from on-ground measured data. Some of the almond varieties showed a significant linear fit between its crown volume and their yield.
Conclusions
Our findings could help breeders and researchers to reduce the gap between phenomics and genomics by generating accurate almond tree information in an efficient, non-destructive, and inexpensive way. The method described is also useful for data mining to select the most promising accessions, making it possible to assess specific multi-criteria ranking varieties, which are one of the main tools for breeders.
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Reference63 articles.
1. Musa-Veloso K, Paulionis L, Poon T, Lee HY. The effects of almond consumption on fasting blood lipid levels: a systematic review and meta-analysis of randomised controlled trials. J Nutr Sci. 2016;5:e34.
2. Esfahlan AJ, Jamei R, Esfahlan RJ. The importance of almond (Prunus amygdalus L.) and its by-products. Food Chem. 2010;120:349–60.
3. Arquero O, editor. Manual del almendro. Sevilla: Consejería de Agricultura, Pesca y Desarrollo Rural. Junta de Andalucía; 2013. https://www.juntadeandalucia.es/export/drupaljda/Manual_del_almendro.pdf.
4. Hill SJ, Stephenson DW, Taylor BK. Almond yield in relation to tree size. Sci Hortic. 1987;33:97–111.
5. Martínez-Gómez P, Prudencio AS, Gradziel TM, Dicenta F. The delay of flowering time in almond: a review of the combined effect of adaptation, mutation and breeding. Euphytica. 2017;213:197.
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献