Author:
Jancik Sylwia,Drabek Jiri,Berkovcova Jitka,Xu Yong Zhong,Stankova Marcela,Klein Jiri,Kolek Vitezslav,Skarda Josef,Tichy Tomas,Grygarkova Ivona,Radzioch Danuta,Hajduch Marian
Abstract
Abstract
Background
It is mandatory to confirm the absence of mutations in the KRAS gene before treating metastatic colorectal cancers with epidermal growth factor receptor inhibitors, and similar regulations are being considered for non-small cell lung carcinomas (NSCLC) and other tumor types. Routine diagnosis of KRAS mutations in NSCLC is challenging because of compromised quantity and quality of biological material. Although there are several methods available for detecting mutations in KRAS, there is little comparative data regarding their analytical performance, economic merits, and workflow parameters.
Methods
We compared the specificity, sensitivity, cost, and working time of five methods using 131 frozen NSCLC tissue samples. We extracted genomic DNA from the samples and compared the performance of Sanger cycle sequencing, Pyrosequencing, High-resolution melting analysis (HRM), and the Conformité Européenne (CE)-marked TheraScreen DxS and K-ras StripAssay kits.
Results and conclusions
Our results demonstrate that TheraScreen DxS and the StripAssay, in that order, were most effective at diagnosing mutations in KRAS. However, there were still unsatisfactory disagreements between them for 6.1% of all samples tested. Despite this, our findings are likely to assist molecular biologists in making rational decisions when selecting a reliable, efficient, and cost-effective method for detecting KRAS mutations in heterogeneous clinical tumor samples.
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Jancik S, Drabek J, Radzioch D, Hajduch M: Clinical relevance of KRAS in human cancers. J Biomed Biotechnol. 2010, 2010: 150960. 1-13, Epub 2010 Jun 7
2. Lorigan P, Califano R, Faivre-Finn C, Howell A, Thatcher N: Lung cancer after treatment for breast cancer. Lancet Oncol. 2010, 11: 1184-1192. 10.1016/S1470-2045(10)70056-5.
3. Matesich SM, Shapiro CL: Second cancers after breast cancer treatment. Semin Oncol. 2003, 30: 740-748. 10.1053/j.seminoncol.2003.08.022.
4. Vasudevan KM, Garraway LA: AKT signaling in physiology and disease. Curr Top Microbiol Immunol. 2010, 347: 105-133. 10.1007/82_2010_66.
5. Hann CL, Brahmer JR: Who should receive epidermal growth factor receptor inhibitors for non-small cell lung cancer and when?. Curr Treat Options Oncol. 2007, 8: 28-37. 10.1007/s11864-007-0024-2.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献