Author:
Wang Heng,Liang Wenqi,Wang Xuyang,Zhan Yuchun,Wang Wence,Yang Lin,Zhu Yongwen
Abstract
Abstract
Background
Energy metabolism disorder or insufficient energy supply during incubation will affect the development and survival of avian embryos. Especially, β-oxidation could not provide the continuous necessary energy for avian embryonic development due to the increasing energy demand under hypoxic conditions during the mid–late embryonic stages. The role and mechanism of hypoxic glycolysis replacing β-oxidation as the main source of energy supply for avian embryonic development in the mid–late stages is unclear.
Results
Here, we found that in ovo injection with glycolysis inhibitor or γ-secretase inhibitor both decreased the hepatic glycolysis level and impaired goose embryonic development. Intriguingly, the blockade of Notch signaling is also accompanied by the inhibition of PI3K/Akt signaling in the embryonic primary hepatocytes and embryonic liver. Notably, the decreased glycolysis and impaired embryonic growth induced by the blockade of Notch signaling were restored by activation of PI3K/Akt signaling.
Conclusions
Notch signaling regulates a key glycolytic switch in a PI3K/Akt-dependent manner to supply energy for avian embryonic growth. Our study is the first to demonstrate the role of Notch signaling-induced glycolytic switching in embryonic development, and presents new insight into the energy supply patterns in embryogenesis under hypoxic conditions. In addition, it may also provide a natural hypoxia model for developmental biology studies such as immunology, genetics, virology, cancer, etc.
Graphical Abstract
Funder
National Natural Science Foundation of China
Guangdong Provincial Science and Technology Special Foundation
China Agriculture Research System of MOF and MARA
National Key R&D Program of China
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献