Abstract
AbstractCancer remains a significant global health challenge, necessitating the exploration of novel and more precise therapeutic options beyond conventional treatments. In this regard, clustered regularly interspaced short palindromic repeats (CRISPR) systems have emerged as highly promising tools for clinical gene editing applications. The CRISPR family encompasses diverse CRISPR-associated (Cas) proteins that possess the ability to recognize specific target sequences. The initial CRISPR system consisted of the Cas9 protein and a single-guide RNA, which guide Cas9 to the desired target sequence, facilitating precise double-stranded cleavage. In addition to the traditional cis-cleavage activity, the more recently discovered Cas12 and Cas13 proteins exhibit trans-cleavage activity, which expands their potential applications in cancer diagnosis. In this review, we provide an overview of the functional characteristics of Cas9, Cas12, and Cas13. Furthermore, we highlight the latest advancements and applications of these CRISPR systems in cancer gene therapy and molecular diagnosis. We also emphasize the importance of understanding the strengths and limitations of each CRISPR system to maximize their clinical utility. By providing a comprehensive overview of the current state of CRISPR technology in cancer research, we aim to inspire further exploration and innovation in this rapidly evolving field.
Graphical abstract
Funder
Shenzhen Sanming Project
Shenzhen Key Medical Discipline Construction Fund
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biochemistry
Reference139 articles.
1. Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH. A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 2003;63(8):1727–30.
2. Soerjomataram I, Bray F. Planning for tomorrow: global cancer incidence and the role of prevention 2020–2070. Nat Rev Clin Oncol. 2021;18(10):663–72.
3. Wyld L, Audisio RA, Poston GJ. The evolution of cancer surgery and future perspectives. Nat Rev Clin Oncol. 2015;12(2):115–24.
4. Galmarini D, Galmarini CM, Galmarini FC. Cancer chemotherapy: a critical analysis of its 60 years of history. Crit Rev Oncol Hematol. 2012;84(2):181–99.
5. Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 2015;12(9):527–40.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献