On the physiological and cellular homeostasis of ascorbate

Author:

Przybyło MagdalenaORCID,Langner Marek

Abstract

AbstractRecent interest in the role of ascorbate in crucial metabolic processes is driven by the growing number of medical reports that show beneficial effects of ascorbate supplementation for maintaining general well-being and recovery from a variety of medical conditions. The effect of ascorbate on the local body environment highly depends on its local concentration; at low concentrations it can cause the reduction of reactive oxygen and facilitate activities of enzymes, while at high concentrations it generates free radicals by reducing ferric ions. Ascorbate serving as an electron donor assists the iron-containing proteins and the iron transfer between various aqueous compartments. These functions require effective and adjustable mechanisms responsible for ascorbate biodistribution. In the paper we propose a new biophysical model of ascorbate redistribution between various aqueous body compartments. It combines recent experimental evidence regarding the ability of ascorbate to cross the lipid bilayer by unassisted diffusion, with active transport by well-characterized sodium vitamin C transporter (SVCT) membrane proteins. In the model, the intracellular concentration of ascorbate is maintained by the balance of two opposing fluxes: fast active and slow passive transport. The model provides a mechanistic understanding of ascorbate flux across the epidermal barrier in the gut as well as the role of astrocytes in ascorbate recycling in the brain. In addition, ascorbate passive diffusion across biological membranes, which depends on membrane electric potentials and pH gradients, provides the rationale for the correlation between ascorbate distribution and the transfer of iron ions inside a cell. The proposed approach provides, for the first time, a mechanistic account of processes leading to ascorbate physiological and cellular distribution, which helps to explain numerous experimental and clinical observations.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3