Loss of hexokinase 1 sensitizes ovarian cancer to high-dose metformin

Author:

Šimčíková Daniela,Gardáš Dominik,Hložková Kateřina,Hruda Martin,Žáček Petr,Rob Lukáš,Heneberg PetrORCID

Abstract

Abstract Background Hexokinases (HKs) are well-studied enzymes catalyzing the first step of glycolysis. However, non-canonical regulatory roles of HKs are still incompletely understood. Here, we hypothesized that HKs comprise one of the missing links between high-dose metformin and the inhibition of the respiratory chain in cancer. Methods We tested the isoenzyme-specific regulatory roles of HKs in ovarian cancer cells by examining the effects of the deletions of HK1 and HK2 in TOV-112D ovarian adenocarcinoma cells. We reverted these effects by re-introducing wild-type HK1 and HK2, and we compared the HK1 revertant with the knock-in of catalytically dead HK1 p.D656A. We subjected these cells to a battery of metabolic and proliferation assays and targeted GC×GC-MS metabolomics. Results We found that the HK1 depletion (but not the HK2 depletion) sensitized ovarian cancer cells to high-dose metformin during glucose starvation. We confirmed that this newly uncovered role of HK1 is glycolysis-independent by the introduction of the catalytically dead HK1. The expression of catalytically dead HK1 stimulated similar changes in levels of TCA intermediates, aspartate and cysteine, and in glutamate as were induced by the HK2 deletion. In contrast, HK1 deletion increased the levels of branched amino acids; this effect was completely eliminated by the expression of catalytically dead HK1. Furthermore, HK1 revertants but not HK2 revertants caused a strong increase of NADPH/NADP ratios independently on the presence of glucose or metformin. The HK1 deletion (but not HK2 deletion) suppressed the growth of xenotransplanted ovarian cancer cells and nearly abolished the tumor growth when the mice were fed the glucose-free diet. Conclusions We provided the evidence that HK1 is involved in the so far unknown glycolysis-independent HK1–metformin axis and influences metabolism even in glucose-free conditions.

Funder

Grantová Agentura, Univerzita Karlova

Univerzita Karlova v Praze

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3