Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms
-
Published:2009-08-04
Issue:1
Volume:9
Page:
-
ISSN:1472-6793
-
Container-title:BMC Physiology
-
language:en
-
Short-container-title:BMC Physiol
Author:
Vidal-Dupiol Jeremie,Adjeroud Mehdi,Roger Emmanuel,Foure Laurent,Duval David,Mone Yves,Ferrier-Pages Christine,Tambutte Eric,Tambutte Sylvie,Zoccola Didier,Allemand Denis,Mitta Guillaume
Abstract
Abstract
Background
Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse.
Results
In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28°C to 32°C over 15 days. A second control set kept at constant temperature (28°C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress.
Conclusion
Under thermal stress zooxanthellae photosynthesis leads to intense oxidative stress in the two partners. This endogenous stress can lead to the perception of the symbiont as a toxic partner for the host. Consequently, we propose that the bleaching process is due in part to a decrease in zooxanthellae acquisition and/or sequestration. In addition to a new hypothesis in coral bleaching mechanisms, this study provides promising biomarkers for monitoring coral health.
Publisher
Springer Science and Business Media LLC
Subject
Physiology (medical),Physiology,General Medicine
Reference88 articles.
1. Hughes T, Baird A, Bellwood D, Card M, Connolly S, Folke C, Grosberg R, Guldberg H, Jackson J, Kleypas J, Lough J, Marshall P, Nyström M, Palumbi S, Pandolfi J, Rosen B, Roughgarden J: Climate change, human impacts, and the resilience of coral reefs. Science. 2003, 301: 929-933. 10.1126/science.1085046. 2. Donner SD, Skirving WJ, Little CM, Oppenheimer M, Hoegh-Guldberg OVE: Global assessment of coral bleaching and required rates of adaptation under climate change. Glob Chang Biol. 2005, 11: 2251-2265. 10.1111/j.1365-2486.2005.01073.x. 3. Chabanet P, Adjeroud M, Andréfouët A, Bozec Y, Ferraris J, Garcìa-Charton J, Schrimm M: Human-induced physical disturbances and their indicators on coral reef habitats: A multi-scale approach. Aquat Living Resour. 2005, 18: 215-230. 10.1051/alr:2005028. 4. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME: Coral reefs under rapid climate change and ocean acidification. Science. 2007, 318: 1737-1742. 10.1126/science.1152509. 5. Lesser MP: Coral reef bleaching and global climate change: Can corals survive the next century?. Proc Natl Acad Sci USA. 2007, 104: 5259-5260. 10.1073/pnas.0700910104.
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|