Abstract
Abstract
Dietary di/tripeptides elicit preventive effects against lifestyle-related diseases such as hypertension, and hypercholesterolemia, etc. Although there have been evidential reports that the intake of protein hydrolysate improved impaired memory in human, limited studies on bioavailability, in particular, beyond the blood-brain barrier (BBB) of candidates in hydrolysate may prevent their extensive physiological studies. Thus, this review discusses the updated studies on BBB transport of peptides showing improved cognitive decline. Furthermore, their accumulation in the brain cerebral parenchyma is also introduced.
Graphical abstract
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Adkison, K. D., & Shen, D. D. (1996). Uptake of valproic acid into rat brain is mediated by a medium-chain fatty acid transporter. The Journal of Pharmacology and Experimental Therapeutics, 276, 1189–1200.
2. Alexander, S. P. H., et al. (2015). The concise guide to pharmacology 2015/16: Transporters. British Journal of Pharmacology, 172, 6110–6202.
3. Ano, Y., Kita, M., Kitaoka, S., & Furuyashiki, T. (2019a). Leucine–Histidine dipeptide attenuates microglial activation and emotional disturbances induced by brain inflammation and repeated social defeat stress. Nutrients, 11, 2161.
4. Ano, Y., Yoshino, Y., Kutsukake, T., Ohyama, R., Fukuda, T., Uchida, K., … Nakayama, H. (2019b). Tryptophan-related dipeptides in fermented dairy products suppress microglial activation and prevent cognitive decline. Aging, 11, 2949–2967.
5. Banks, W. A. (2002). Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure. The Journal of Pharmacology and Experimental Therapeutics, 302, 822–827.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献