Author:
Li Feijie,Gunenc Aynur,Hosseinian Farah
Abstract
Abstract
This study investigated physical, chemical and lipid oxidative properties of emulsion gels (W/O) incorporating Jerusalem artichoke (JA) inulin. Primary purified inulin extract (PPIE, 1%) improved the homogeneity of emulsion gel (with no syneresis) and developed smaller particle size droplets (average 40 μm) than control (average size 60 μm). HPLC revealed that PPIE had 80.28% inulin content compared with commercial inulin (CI, 100%). Crude inulin extract (CIE, 0.08–0.33 mg/mL) delayed linoleic acid oxidation because of higher total phenolic content (4.96 ± 0.01, mg GAE/g), compared with PPIE (0.72 ± 0.03). Lipid oxidative stability of emulsion gels with inulin samples was in the order of CI > PPIE > CIE (P < 0.05) by Rancimat analysis, which agreed with volumetric gel index results. This study suggests that emulsion gels with JA inulin (PPIE) could act as a potential fat replacement in food systems.
Graphical abstract
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Aleong, J. M., Frochot, S., & Goff, H. D. (2008). Ice recrystallization inhibition in ice cream by propylene glycol monostearate. Journal of Food Science, 73(9), E463–E468. https://doi.org/10.1111/j.1750-3841.2008.00954.x.
2. Bazina, N., & He, J. (2018). Analysis of fatty acid profiles of free fatty acids generated in deep-frying process. Journal of Food Science and Technology, 55(8), 3085–3092. https://doi.org/10.1007/s13197-018-3232-9.
3. Beirão-da-costa, M. L., Januario, M. I. N., Simao, F. M. S., & Leitao, A. E. B. (2005). Characterisation of inulin from chicory and salsify cultivated in Portugal. Alimentos E Nutrição Araraquara, 16(3), 221–225.
4. Bhagia, S., Ferreira, J. F. S., Kothari, N., Nunez, A., Liu, X., da Silva Dias, N., et al. (2018). Sugar yield and composition of tubers from Jerusalem Artichoke (Helianthus tuberosus) irrigated with saline waters. Biotechnology and Bioengineering, 115(6), 1475–1484. https://doi.org/10.1002/bit.26582.
5. Böhm, A., Kaiser, I., Trebstein, A., & Henle, T. (2005). Heat-induced degradation of inulin. European Food Research and Technology. https://doi.org/10.1007/s00217-004-1098-8.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献