Insight into the mechanism of fracture properties modulated by microstructure in the myofibrillar protein and polysaccharide gel systems

Author:

Luo Cheng,Zhang Tao,Jiang Xiping,Chen Yinji,Zhou Guanghong,Zhuang XinboORCID

Abstract

AbstractThe objective of this study was to investigate the mechanism of fracture properties modulated by microstructure in the myofibrillar protein (MP) and polysaccharides gel systems. Compare to the modified starch, the dietary fiber significantly improved the fracture stress and reduced the fracture strain at same concentration. The treatment with 2% dietary fiber had the highest value of fracture stress and the lowest value of fracture strain, which were 259 g and 1.12 respectively. From the skeleton structure, the Raman spectroscopy result showed that dietary fiber addition significantly reduced the intensity at 2945 cm−1, which suggested that the aggregation of hydrophobic groups was improved. The SEM showed that the treatment with 2% dietary fiber had the highest fractal dimension value of 1.7772 and the lowest lacunary value of 0.258. From the filling structure, the paraffin section showed that the polysaccharides were just simply trapped in MP gel networks and formed numerous large volumes and no-elastic of cavities. The principal component analysis suggested that the compactness of three-dimensional gel networks determined fracture stress of composite gel. The no- no-elastic of cavities formed by modified starch and dietary fiber resulted in the reduction of fracture strain. These results would promote the development of innovative nutritional meat product formulation with satisfied textural property. Graphical Abstract

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,Nutrition and Dietetics,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3