The CD2v protein of African swine fever virus inhibits macrophage migration and inflammatory cytokines expression by downregulating EGR1 expression through dampening ERK1/2 activity

Author:

Zhang Min,Lv Lilei,Luo Huaye,Cai Hongming,Yu Lingxue,Jiang Yifeng,Gao Fei,Tong Wu,Li Liwei,Li Guoxin,Zhou Yanjun,Tong Guangzhi,Liu ChanglongORCID

Abstract

AbstractAfrican swine fever virus (ASFV) is a highly contagious and deadly virus that leads to high mortality rates in domestic swine populations. Although the envelope protein CD2v of ASFV has been implicated in immunomodulation, the molecular mechanisms underlying CD2v-mediated immunoregulation remain unclear. In this study, we generated a stable CD2v-expressing porcine macrophage (PAM-CD2v) line and investigated the CD2v-dependent transcriptomic landscape using RNA-seq. GO terms enrichment analysis and gene set enrichment analysis revealed that CD2v predominantly affected the organization and assembly process of the extracellular matrix. Wound healing and Transwell assays showed that CD2v inhibited swine macrophage migration. Further investigation revealed a significant decrease in the expression of transcription factor early growth response 1 (EGR1) through inhibiting the activity of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Notably, EGR1 knockout in swine macrophages restricted cell migration, whereas EGR1 overexpression in PAM-CD2v restored the ability of macrophage migration, suggesting that CD2v inhibits swine macrophage motility by downregulating EGR1 expression. Furthermore, we performed chromatin immunoprecipitation and sequencing for EGR1 and the histone mark H3K27 acetylation (H3K27ac), and we found that EGR1 co-localized with the activated histone modification H3K27ac neighboring the transcriptional start sites. Further analysis indicated that EGR1 and H3K27ac co-occupy the promoter regions of cell locomotion-related genes. Finally, by treating various derivatives of swine macrophages with lipopolysaccharides, we showed that depletion of EGR1 decreased the expression of inflammatory cytokines including TNFα, IL1α, IL1β, IL6, and IL8, which play essential roles in inflammation and host immune response. Collectively, our results provide new insights into the immunomodulatory mechanism of ASFV CD2v.

Funder

Natural Science Foundation of Shanghai

Central Public-interest Scientific Institution Basal Research Fund, Chinese Academy of Fishery Sciences

Agricultural Science and Technology Innovation Program

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3