Small RNAs mediate transgenerational inheritance of genome-wide trans-acting epialleles in maize

Author:

Cao Shuai,Wang Longfei,Han Tongwen,Ye Wenxue,Liu Yang,Sun Yi,Moose Stephen P.,Song Qingxin,Chen Z. JeffreyORCID

Abstract

Abstract Background Hybridization and backcrossing are commonly used in animal and plant breeding to induce heritable variation including epigenetic changes such as paramutation. However, the molecular basis for hybrid-induced epigenetic memory remains elusive. Results Here, we report that hybridization between the inbred parents B73 and Mo17 induces trans-acting hypermethylation and hypomethylation at thousands of loci; several hundreds (~ 3%) are transmitted through six backcrossing and three selfing generations. Notably, many transgenerational methylation patterns resemble epialleles of the nonrecurrent parent, despite > 99% of overall genomic loci are converted to the recurrent parent. These epialleles depend on 24-nt siRNAs, which are eliminated in the isogenic hybrid Mo17xB73:mop1-1 that is defective in siRNA biogenesis. This phenomenon resembles paramutation-like events and occurs in both intraspecific (Mo17xB73) and interspecific (W22xTeosinte) hybrid maize populations. Moreover, siRNA abundance and methylation levels of these epialleles can affect expression of their associated epigenes, many of which are related to stress responses. Conclusion Divergent siRNAs between the hybridizing parents can induce trans-acting epialleles in the hybrids, while the induced epigenetic status is maintained for transgenerational inheritance during backcross and hybrid breeding, which alters epigene expression to enhance growth and adaptation. These genetic and epigenetic principles may apply broadly from plants to animals.

Funder

major research plan

outstanding youth foundation of jiangsu province of china

Publisher

Springer Science and Business Media LLC

Reference79 articles.

1. Quadrana L, Colot V. Plant transgenerational epigenetics. Annu Rev Genet. 2016;50:467–91.

2. Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell. 2014;157:95–109.

3. Perez MF, Lehner B. Intergenerational and transgenerational epigenetic inheritance in animals. Nat Cell Biol. 2019;21:143–51.

4. Posner R, Toker IA, Antonova O, Star E, Anava S, Azmon E, et al. Neuronal small RNAs control behavior transgenerationally. Cell. 2019;177(1814-1826):e1815.

5. Moore RS, Kaletsky R, Murphy CT. Piwi/PRG-1 argonaute and TGF-beta mediate transgenerational learned pathogenic avoidance. Cell. 2019;177(1827-1841):e1812.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3