Abstract
Abstract
Background
Lettuce (Lactuca sativa L.) is an economically important vegetable crop worldwide. Lettuce is believed to be domesticated from a single wild ancestor Lactuca serriola and subsequently diverged into two major morphologically distinct vegetable types: leafy lettuce and stem lettuce. However, the role of epigenetic variation in lettuce domestication and divergence remains largely unknown.
Results
To understand the genetic and epigenetic basis underlying lettuce domestication and divergence, we generate single-base resolution DNA methylomes from 52 Lactuca accessions, including major lettuce cultivars and wild relatives. We find a significant increase of DNA methylation during lettuce domestication and uncover abundant epigenetic variations associated with lettuce domestication and divergence. Interestingly, DNA methylation variations specifically associated with leafy and stem lettuce are related to regulation and metabolic processes, respectively, while those associated with both types are enriched in stress responses. Moreover, we reveal that domestication-induced DNA methylation changes could influence expression levels of nearby and distal genes possibly through affecting chromatin accessibility and chromatin loop.
Conclusion
Our study provides population epigenomic insights into crop domestication and divergence and valuable resources for further domestication for diversity and epigenetic breeding to boost crop improvement.
Funder
Singapore Food Story R&D Programme
National Research Foundation Singapore
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献