Abstract
AbstractUnderstanding coding mutations is important for many applications in biology and medicine but the vast mutation space makes comprehensive experimental characterisation impossible. Current predictors are often computationally intensive and difficult to scale, including recent deep learning models. We introduce Sequence UNET, a highly scalable deep learning architecture that classifies and predicts variant frequency from sequence alone using multi-scale representations from a fully convolutional compression/expansion architecture. It achieves comparable pathogenicity prediction to recent methods. We demonstrate scalability by analysing 8.3B variants in 904,134 proteins detected through large-scale proteomics. Sequence UNET runs on modest hardware with a simple Python package.
Funder
Wellcome Trust
Helmut Horten Stiftung
ETH Zürich Foundation
EMBL´s European Bioinformatics Institute (EMBL-EBI)
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献