microGWAS: a computational pipeline to perform large scale bacterial genome-wide association studies

Author:

Burgaya JuditORCID,Damaris Bamu F.ORCID,Fiebig JennyORCID,Galardini MarcoORCID

Abstract

AbstractIdentifying genetic variants associated with bacterial phenotypes, such as virulence, host preference, and antimicrobial resistance, has great potential for a better understanding of the mechanisms involved in these traits. The availability of large collections of bacterial genomes has made genome-wide association studies (GWAS) a common approach for this purpose. The need to employ multiple software tools for data pre- and post-processing limits the application of these methods by experienced bioinformaticians. To address this issue, we have developed a pipeline to perform bacterial GWAS from a set of assemblies and annotations, with multiple phenotypes as targets. The associations are run using five sets of genetic variants: unitigs, gene presence/absence, rare variants (i.e. gene burden test), gene cluster specific k-mers, and all unitigs jointly. All variants passing the association threshold are further annotated to identify overrepresented biological processes and pathways. The results can be further augmented by generating a phylogenetic tree and by predicting the presence of antimicrobial resistance and virulence associated genes. We tested the microGWAS pipeline on a previously reported dataset onE. colivirulence, successfully identifying the causal variants, and providing further interpretation on the association results. The microGWAS pipeline integrates the state-of-the-art tools to perform bacterial GWAS into a single, user-friendly, and reproducible pipeline, allowing for the democratization of these analyses. The pipeline can be accessed, together with its documentation, at:https://github.com/microbial-pangenomes-lab/microGWAS.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3