Author:
Janizek Joseph D.,Spiro Anna,Celik Safiye,Blue Ben W.,Russell John C.,Lee Ting-I,Kaeberlin Matt,Lee Su-In
Abstract
AbstractAs interest in using unsupervised deep learning models to analyze gene expression data has grown, an increasing number of methods have been developed to make these models more interpretable. These methods can be separated into two groups: post hoc analyses of black box models through feature attribution methods and approaches to build inherently interpretable models through biologically-constrained architectures. We argue that these approaches are not mutually exclusive, but can in fact be usefully combined. We propose PAUSE (https://github.com/suinleelab/PAUSE), an unsupervised pathway attribution method that identifies major sources of transcriptomic variation when combined with biologically-constrained neural network models.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献