Homology-mediated inter-chromosomal interactions in hexaploid wheat lead to specific subgenome territories following polyploidization and introgression

Author:

Jia Jizeng,Xie Yilin,Cheng Jingfei,Kong Chuizheng,Wang Meiyue,Gao Lifeng,Zhao Fei,Guo Jingyu,Wang Kai,Li Guangwei,Cui Dangqun,Hu Tiezhu,Zhao Guangyao,Wang Daowen,Ru Zhengang,Zhang YijingORCID

Abstract

Abstract Background Polyploidization and introgression are major events driving plant genome evolution and influencing crop breeding. However, the mechanisms underlying the higher-order chromatin organization of subgenomes and alien chromosomes are largely unknown. Results We probe the three-dimensional chromatin architecture of Aikang 58 (AK58), a widely cultivated allohexaploid wheat variety in China carrying the 1RS/1BL translocation chromosome. The regions involved in inter-chromosomal interactions, both within and between subgenomes, have highly similar sequences. Subgenome-specific territories tend to be connected by subgenome-dominant homologous transposable elements (TEs). The alien 1RS chromosomal arm, which was introgressed from rye and differs from its wheat counterpart, has relatively few inter-chromosome interactions with wheat chromosomes. An analysis of local chromatin structures reveals topologically associating domain (TAD)-like regions covering 52% of the AK58 genome, the boundaries of which are enriched with active genes, zinc-finger factor-binding motifs, CHH methylation, and 24-nt small RNAs. The chromatin loops are mostly localized around TAD boundaries, and the number of gene loops is positively associated with gene activity. Conclusions The present study reveals the impact of the genetic sequence context on the higher-order chromatin structure and subgenome stability in hexaploid wheat. Specifically, we characterized the sequence homology-mediated inter-chromosome interactions and the non-canonical role of subgenome-biased TEs. Our findings may have profound implications for future investigations of the interplay between genetic sequences and higher-order structures and their consequences on polyploid genome evolution and introgression-based breeding of crop plants.

Funder

National Key Research and Development Plan

National Key Research and Development Program

Construction Funds for the Collaborative Innovation Center of Henan Grain Crops

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3