Toward a base-resolution panorama of the in vivo impact of cytosine methylation on transcription factor binding

Author:

Hernandez-Corchado Aldo,Najafabadi Hamed S.ORCID

Abstract

AbstractBackgroundWhile methylation of CpG dinucleotides is traditionally considered antagonistic to the DNA-binding activity of most transcription factors (TFs), recent in vitro studies have revealed a more complex picture, suggesting that over a third of TFs may preferentially bind to methylated sequences. Expanding these in vitro observations to in vivo TF binding preferences is challenging since the effect of methylation of individual CpG sites cannot be easily isolated from the confounding effects of DNA accessibility and regional DNA methylation. Thus, in vivo methylation preferences of most TFs remain uncharacterized.ResultsWe introduce joint accessibility-methylation-sequence (JAMS) models, which connect the strength of the binding signal observed in ChIP-seq to the DNA accessibility of the binding site, regional methylation level, DNA sequence, and base-resolution cytosine methylation. We show that JAMS models quantitatively explain TF occupancy, recapitulate cell type-specific TF binding, and have high positive predictive value for identification of TFs affected by intra-motif methylation. Analysis of 2209 ChIP-seq experiments results in high-confidence JAMS models for 260 TFs, revealing a negative association between in vivo TF occupancy and intra-motif methylation for 45% of studied TFs, as well as 16 TFs that are predicted to bind to methylated sites, including 11 novel methyl-binding TFs mostly from the multi-zinc finger family.ConclusionsOur study substantially expands the repertoire of in vivo methyl-binding TFs, but also suggests that most TFs that prefer methylated CpGs in vitro present themselves as methylation agnostic in vivo, potentially due to the balancing effect of competition with other methyl-binding proteins.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3