Author:
Chen Ping,Zhou Hui,Huang Yanyan,Xie Zhe,Zhang Mengjie,Wei Yuli,Li Jia,Ma Yuewei,Luo Min,Ding Wenmian,Cao Junwei,Jiang Tao,Nan Peng,Fang Jiasong,Li Xuan
Abstract
Abstract
Background
The full biosphere structure and functional exploration of the microbial communities of the Challenger Deep of the Mariana Trench, the deepest known hadal zone on Earth, lag far behind that of other marine realms.
Results
We adopt a deep metagenomics approach to investigate the microbiome in the sediment of Challenger Deep, Mariana Trench. We construct 178 metagenome-assembled genomes (MAGs) representing 26 phyla, 16 of which are reported from hadal sediment for the first time. Based on the MAGs, we find the microbial community functions are marked by enrichment and prevalence of mixotrophy and facultative anaerobic metabolism. The microeukaryotic community is found to be dominated by six fungal groups that are characterized for the first time in hadal sediment to possess the assimilatory and dissimilatory nitrate/sulfate reduction, and hydrogen sulfide oxidation pathways. By metaviromic analysis, we reveal novel hadal Caudovirales clades, distinctive virus-host interactions, and specialized auxiliary metabolic genes for modulating hosts’ nitrogen/sulfur metabolism. The hadal microbiome is further investigated by large-scale cultivation that cataloged 1070 bacterial and 19 fungal isolates from the Challenger Deep sediment, many of which are found to be new species specialized in the hadal habitat.
Conclusion
Our hadal MAGs and isolates increase the diversity of the Challenger Deep sediment microbial genomes and isolates present in the public. The deep metagenomics approach fills the knowledge gaps in structure and diversity of the hadal microbiome, and provides novel insight into the ecology and metabolism of eukaryotic and viral components in the deepest biosphere on earth.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Biological Resources Programme from Chinese Academy of Sciences
Publisher
Springer Science and Business Media LLC
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献