Microbial communities reveal niche partitioning across the slope and bottom zones of the challenger deep

Author:

Hu Aoran12,Zhao Weishu123,Wang Jing234,Qi Qi12,Xiao Xiang1245,Jing Hongmei56

Affiliation:

1. State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai China

2. International Center for Deep Life Investigation (IC‐DLI) Shanghai Jiao Tong University Shanghai China

3. School of Oceanography Shanghai Jiao Tong University Shanghai China

4. SJTU Yazhou Bay Institute of Deepsea Sci‐Tech Yongyou Industrial Park Sanya China

5. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Zhuhai Guangdong China

6. Institute of Deep‐Sea Science and Engineering Chinese Academy of Sciences Sanya China

Abstract

AbstractWidespread marine microbiomes exhibit compositional and functional differentiation as a result of adaptation driven by environmental characteristics. We investigated the microbial communities in both seawater and sediments on the slope (7–9 km) and the bottom (9–11 km) of the Challenger Deep of the Mariana Trench to explore community differentiation. Both metagenome‐assembled genomes (MAGs) and 16S rRNA amplicon sequence variants (ASVs) showed that the microbial composition in the seawater was similar to that of sediment on the slope, while distinct from that of sediment in the bottom. This scenario suggested a potentially stronger community interaction between seawater and sediment on the slope, which was further confirmed by community assembly and population movement analyses. The metagenomic analysis also indicates a specific stronger potential of nitrate reduction and sulphate assimilation in the bottom seawater, while more versatile nitrogen and sulphur cycling pathways occur on the slope, reflecting functional differentiations among communities in conjunction with environmental features. This work implies that microbial community differentiation occurred in the different hadal niches, and was likely an outcome of microbial adaptation to the extreme hadal trench environment, especially the associated hydrological and geological conditions, which should be considered and measured in situ in future studies.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3