The ENCODE Imputation Challenge: a critical assessment of methods for cross-cell type imputation of epigenomic profiles
-
Published:2023-04-18
Issue:1
Volume:24
Page:
-
ISSN:1474-760X
-
Container-title:Genome Biology
-
language:en
-
Short-container-title:Genome Biol
Author:
Schreiber JacobORCID, Boix Carles, wook Lee Jin, Li Hongyang, Guan Yuanfang, Chang Chun-Chieh, Chang Jen-Chien, Hawkins-Hooker Alex, Schölkopf Bernhard, Schweikert Gabriele, Carulla Mateo Rojas, Canakoglu Arif, Guzzo Francesco, Nanni Luca, Masseroli Marco, Carman Mark James, Pinoli Pietro, Hong Chenyang, Yip Kevin Y., Spence Jeffrey P., Batra Sanjit Singh, Song Yun S., Mahony Shaun, Zhang Zheng, Tan Wuwei, Shen Yang, Sun Yuanfei, Shi Minyi, Adrian Jessika, Sandstrom Richard, Farrell Nina, Halow Jessica, Lee Kristen, Jiang Lixia, Yang Xinqiong, Epstein Charles, Strattan J. Seth, Bernstein Bradley, Snyder Michael, Kellis Manolis, Stafford William, Kundaje Anshul,
Abstract
AbstractA promising alternative to comprehensively performing genomics experiments is to, instead, perform a subset of experiments and use computational methods to impute the remainder. However, identifying the best imputation methods and what measures meaningfully evaluate performance are open questions. We address these questions by comprehensively analyzing 23 methods from the ENCODE Imputation Challenge. We find that imputation evaluations are challenging and confounded by distributional shifts from differences in data collection and processing over time, the amount of available data, and redundancy among performance measures. Our analyses suggest simple steps for overcoming these issues and promising directions for more robust research.
Funder
Foundation for the National Institutes of Health H2020 European Research Council National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–330. 2. ENCODE Project Consortium, Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020;583(7818):699–710. 3. Stunnenberg HG, International Human Epigenome Consortium, Hirst M. The International Human Epigenome Consortium: a blueprint for scientific collaboration and discovery. Cell. 2016;167(5):1145–1149. 4. Ramilowski JA, Yip CW, Agrawal S, Chang JC, Ciani Y, Kulakovskiy IV, et al. Functional annotation of human long noncoding RNAs via molecular phenotyping. Genome Res. 2020;30(7):1060–72. 5. GTEx Consortium, Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working Group, Statistical Methods groups—Analysis Working Group, Enhancing GTEx (eGTEx) groups, NIH Common Fund, NIH/NCI, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204–213.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|